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* Practical Motivation
— Microarray
— Supermarket
— Search Engine

e Existing Methods
— AlC and BIC
— LASSO and SCAD
— SIS and FR
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SIS (Fan and Lv, 2008, JRSSB)

FR (Wang, 2009, JASA)

We typically wish cov(X) to be well behaved
and better not to be highly singular.

What is the real world?
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Data Resource:

— A major domestic super
market in Northern China.

Response:

— Daily customer volume for a
total of 464 days.

Predictor:

— Daily sales volume for a total
of 6398 products.

Objective:

— Predict next day’s customer
volume.
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Randomly generate a high dimensional data
according to a very simple factor model

— Sample Size = 100;

— Predictor Dimension = 1000;

— Factor Model: X=Latent Factor + Error

— Estimation: Standard SVD

— Question: Can we capture latent factor
consistently or not?
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A Theoretical Framework

e To model the regression relationship between Y; and X;, we assume that
Yi=X,"0+¢ 2.1
L ] + iy ( : )

where £; is a random noise with mean 0 and variance o2; § = (6,,---,68,)" €
R? is a p-dimensional coefficient vector and its true value is given by 6, =

(!901: e }ggﬁ)T - RP.

e To model the factor structure, we follow Fan et al. (2008) and assume
X; = BZ; + X;, (2.2)

where Z; = (Zy,--+ ,Ziy) " € R? is a d-dimensional latent factor, B = (bjx) €
R”*9 is the loading matrix, and X; = (Xj;,-- - ,X{p)T € R? represents the infor-

mation contained in X; but missed by Z;.



To reflect the endogeneity problem, we allow that &; to be correlated with Xj;

through the common factor Z; as

E; = ZJCE -1—E~i} (23)

where a = (ay,--- ,04) " € R? is a d-dimensional vector and its true value is given by
ap € RY. Moreover, £; is some random noise independent of both Z; and X;. We then

should have var(g;) = 62 <var(Y;) = 1.



e Profiled Response: E =Y, — Z! vy with 79 = B' 0 + «.
e Profiled Predictor and Noise: )E and &;.

e Profiled Regression Model: E = f;ﬁg + &;.
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Let (5\31;3) be the jth (1 < j < n) leading eigenvalue-eigenvector pair for the
matrix XXT/(np) e R"*", Thus, we should have j\l > 5\2 > e > j\n.

Because the true factor dimension is dp, intuitively we should expect that first dy

eigenvalues to be relatively large while the rest to be comparatively small.

Thus, if we define an eigenvalue ratio criterion as A;/A;;; with Ay = 1 and

1 <j <(n —1), we should expect its maximum value to happen at j = dy.

Consequently, the true structure dimension can be estimated by

- -

d = argmaxo .. (Aj/Aj1)s

where d,, 1s a pre-specified maximum factor dimension.



—
=
M
@)
-5
™MD
(o &

O
Q)
A",
=

-5
—t

O
O
0
D
W

Theorem 1. Assume technical conditions (A1)-(A83) as given in the Appendiz A, then

we should have P(d = dy) — 1 as n — oo.



§

Q)

LR
(¥p)
—t
.y
-
0oQ
Q)
(@)
—t
@)
%
O
(Fp)
©
Q)
O
M

With a correctly specified factor dimension (i.e., d = dy), we can subsequently

construct a least squares type objective function as

Oz, B) = (np) "' Y_ |[X; - z5;|"

with 3; = (bﬂ, ‘e ,bjﬂ:)T c R?. We know immediately that B = (Bry--- :ﬁp)T €
RP*4, Then, S(Z) can be estimated by minimizing O(Z, B) with respect to both

Z € R™¢ and B € RP*4,
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To quantify the estimation accuracy of S(Z), the following two discrepancy mea-

sures are considered. They are, respectively,
~ ~ ~ 2
D\(Z,Z) = n~tr {ZTQ(Z)Z} and Dy(Z,Z) = tir{H(Z) _ H(Z)} .

Theorem 2. Assume d = dy and the technical conditions (A1)—-(A3) as given in the

Appendiz A, then we should have both Dl(Z:ﬁ) = Oy(n~1) and Dg(Z,ﬁ) = Op(n71).



e With estimated dy and S(Z), we can get factor profiled data as Y = Q(E)Y c R"

——

and X = Q(Z)X, with X = (Xi, -+ ,X,) € R™P,

e Subsequently, the simple method of SIS can be applied to Y and X directly, and

the resulting estimate is path consistent (Leng et al., 2006). We refer to such a
method as PIS.

e More specifically, PIS estimates 6; by éj = (n7'X[X;) 1 (n'YTX]).

Theorem 3. Assume d = dy and the technical conditions (A1)-(A3) as given in the

Appendiz A, then we should have max;<;<, |§J — 0o = Op(y/log p/n) as n — cc.
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Previous subsection proves that PIS is path consistent, which implies that P(Mp =
M(myzpy) — 1 as n — oo. However, for a real application, the value of |[Myp| is
unknown. Thus, even if the solution path is given, one still needs a statistically sound
criterion to decide which model in M is mostly plausible. To this end, we proposed

here the following heuristic BIC-type selection criterion,
BIC(M) = log RSS(M) + (M| -logn - (logp/n), (3.1)

where RSS(M) = [[Y = 30 ieM éjﬁjﬂz is the residual sum of squares. Then the best

——

model can be selected as M = argmin y 3 BIC(M).
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Step (1) (Initialization). Set MGy = ( and YO = ?, i.e., the factor profiled response.
Step (2) (Sequential Screening).

(2.1) (Estimation). In the kth step (k > 1), we are given My, _,, and also

Y1), Then, for every j € M F\M?k—w estimate its regression coef-

ficient as é}k} = {ﬁ(k_l)Tﬁj} / ||§’§J.||2 and its correlation coefficient with

the response as &J.{,-k} = {i‘{(k_l}—rﬁj}/{ [YE-D| - ||§;§J||}

(2.2) (Screening). We then find @, = argmax e ,\sc-1) |§}’“) and update
MGy = M) U{a} accordingly.
(2.3) (Elimination). According to ay, we then get an updated response vector
as YK = Y- — 6K with j = a.
Step (3) (Solution Path). Tterating Step (2) for a total of n times, which leads a total
of n+ 1 nested candidate models. We then collect those models by asolution

path M = {M7,: 0 < k <n} with M, = {a, -+, q} for k > 0.

Step (4) (Model Selection). Select the best model as M = argmin gy« BIC(M).

O'CJ
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Ezample 1. This is an example borrowed from Fan and Lv (2008). Specifically, we
fix dy = 1, p= 5000, and n = 150. Z; is generated from N(0,1). X, is then simulated
as (2.2), where by, = 1 and X; follows a p-dimensional standard normal distribution.
Following Fan and Lv (2008), we assume the first [M7| = 3 predictors to be relevant
and their coefficients are given by 6y; = 5 for 1 < j < |[Mgp|. Accordingly, 6y; = 0
for every j > |Mgyp|. Subsequently, Y; is given by (2.1), where &; follows (2.3) with
ap = 0.80. and . = 0.60.. Lastly, o2 is particularly selected so that the signal-to-

noise ratio, i.e., SNR=var(X,"6;)/0?, is given by 1, 2, or 5.



Signal Variable % of % of % of  Average  Absolute
Noise Selection Correct Incorrect Correct Model Estimation
Ratio Method Zeros Zeros fit Size Error
ExAMPLE 1
1 SIS 100.0 77.2 0.0 1.0 25.4
PIS 100.0 95.8 0.5 0.1 14.6
PSS 100.0 95.8 0.5 0.1 14.6
2 SIS 100.0 70.3 0.0 1.0 21.3
PIS 100.0 46.3 40.0 1.6 7.9
PSS 100.0 43.3 45.5 1.7 74
5} SIS 100.0 67.0 0.0 1.0 18.4
PIS 100.0 0.2 99.5 3.0 1.0
3.0 0.9

PSS 100.0 0.0 100.0
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As our first step, we need to estimate the dimension of the latent factor. We find
that the first eigenvalue of the matrix XX'/(np) is as large as A = 35.4% while the
second one 18 as small as 5\2 = 3.5%. The big difference as demonstrated between 5\1
and 5\2 suggests that the true factor dimension might be dy = 1. Such a conjecture is
formally confirmed by MERC. We then fix d = 1 throughout the rest of this example.
Thereafter, the factor subspace & (ﬁ) can be estimated and the profiled data (ﬁf,ﬁ)

can be produced.
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For a real problem like this, the value of 6, is unknown. We thus have to rely
on out-of-sample testing to compare different methods’ estimation and/or prediction
accuracy. We then conducted a total of 200 random experiments. For each experiment,
we randomly split the entire dataset D = {1,--- ,464} into two parts. That is D =
Dy |UD; with |Dy| = ny = 400 as the training data and |D;| = n; = 64 as the testing
data. Accordingly, we write Xo = {X; :7 € Do} € R"*? Y, ={Y, : i € Dy} € R,
X, ={X;:1e€D} e R, and Y, ={Y; :7 € D;} € R*. Notations for (ﬁn,ﬁﬂ,

o~

(ﬁg,ﬁl), and (ﬁo,Zl) are defined accordingly.
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Figure 1: The real supermarket example. Boxplots for the median squared prediction
errors (MSPE) based on 200 random replications.



Comments are very welcome!
Many thanks!



