Factor Profiling for Ultra-High Dimensional Variable Selection

Hansheng Wang

Guanghua School of Management Peking University

hansheng.gsm.pku.edu.cn

Basic Background

- Practical Motivation
 - Microarray
 - Supermarket
 - Search Engine
- Existing Methods
 - AIC and BIC
 - LASSO and SCAD
 - SIS and FR

Screening Methods

- SIS (Fan and Lv, 2008, JRSSB)
- FR (Wang, 2009, JASA)
- We typically wish cov(X) to be well behaved and better not to be highly singular.
- What is the real world?

A Supermarket Example

- Data Resource:
 - A major domestic super market in Northern China.
- Response:
 - Daily customer volume for a total of 464 days.
- Predictor:
 - Daily sales volume for a total of 6398 products.
- Objective:
 - Predict next day's customer volume.

Different Eigen-Values

Eigen-Value Contributions (%) -ю · \odot

Different Eigen-Values

A Simple Experiment

- Randomly generate a high dimensional data according to a very simple factor model
 - Sample Size = 100;
 - Predictor Dimension = 1000;
 - Factor Model: X=Latent Factor + Error
 - Estimation: Standard SVD
 - Question: Can we capture latent factor consistently or not?

Estimating Latent Factor by SVD

A Theoretical Framework

• To model the regression relationship between Y_i and X_i , we assume that

$$Y_i = X_i^\top \theta + \varepsilon_i, \tag{2.1}$$

where ε_i is a random noise with mean 0 and variance σ_{ε}^2 ; $\theta = (\theta_1, \dots, \theta_p)^{\top} \in \mathbb{R}^p$ is a *p*-dimensional coefficient vector and its true value is given by $\theta_0 = (\theta_{01}, \dots, \theta_{0p})^{\top} \in \mathbb{R}^p$.

• To model the factor structure, we follow Fan et al. (2008) and assume

$$X_i = BZ_i + \widetilde{X}_i, \tag{2.2}$$

where $Z_i = (Z_{i1}, \dots, Z_{id})^\top \in \mathbb{R}^d$ is a *d*-dimensional latent factor, $B = (b_{jk}) \in \mathbb{R}^{p \times d}$ is the loading matrix, and $\widetilde{X}_i = (\widetilde{X}_{i1}, \dots, \widetilde{X}_{ip})^\top \in \mathbb{R}^p$ represents the information contained in X_i but missed by Z_i .

Endogeneity Issue

To reflect the endogeneity problem, we allow that ε_i to be correlated with X_i through the common factor Z_i as

$$\varepsilon_i = Z_i^\top \alpha + \tilde{\varepsilon}_i, \tag{2.3}$$

where $\alpha = (\alpha_1, \dots, \alpha_d)^\top \in \mathbb{R}^d$ is a *d*-dimensional vector and its true value is given by $\alpha_0 \in \mathbb{R}^d$. Moreover, $\tilde{\varepsilon}_i$ is some random noise independent of both Z_i and \tilde{X}_i . We then should have $\operatorname{var}(\tilde{\varepsilon}_i) = \tilde{\sigma}_{\varepsilon}^2 \leq \operatorname{var}(Y_i) = 1$.

Factor Profiling

- Profiled Response: $\widetilde{Y}_i = Y_i Z_i^\top \gamma_0$ with $\gamma_0 = B^\top \theta_0 + \alpha_0$.
- Profiled Predictor and Noise: \widetilde{X}_i and $\tilde{\varepsilon}_i$.
- Profiled Regression Model: $\widetilde{Y}_i = \widetilde{X}_i^\top \theta_0 + \widetilde{\varepsilon}_i$.

Estimating Factor Dimension

- Let $(\hat{\lambda}_j, \hat{V}_j)$ be the *j*th $(1 \leq j \leq n)$ leading eigenvalue-eigenvector pair for the matrix $\mathbb{X}\mathbb{X}^{\top}/(np) \in \mathbb{R}^{n \times n}$. Thus, we should have $\hat{\lambda}_1 \geq \hat{\lambda}_2 \geq \cdots \geq \hat{\lambda}_n$.
- Because the true factor dimension is d_0 , intuitively we should expect that first d_0 eigenvalues to be relatively large while the rest to be comparatively small.
- Thus, if we define an eigenvalue ratio criterion as $\hat{\lambda}_j/\hat{\lambda}_{j+1}$ with $\hat{\lambda}_0 = 1$ and $1 \le j \le (n-1)$, we should expect its maximum value to happen at $j = d_0$.
- Consequently, the true structure dimension can be estimated by

$$\hat{d} = \operatorname{argmax}_{0 \le j \le d_{\max}}(\hat{\lambda}_j / \hat{\lambda}_{j+1}),$$

where d_{max} is a pre-specified maximum factor dimension.

Theoretical Properties

Theorem 1. Assume technical conditions (A1)-(A3) as given in the Appendix A, then we should have $P(\hat{d} = d_0) \rightarrow 1$ as $n \rightarrow \infty$.

Estimating Factor Subspace

With a correctly specified factor dimension (i.e., $d = d_0$), we can subsequently construct a least squares type objective function as

$$\mathcal{O}(\mathbb{Z}, B) = (np)^{-1} \sum_{j=1}^{p} \left\| \mathbb{X}_j - \mathbb{Z}\beta_j \right\|^2$$

with $\beta_j = (b_{j1}, \cdots, b_{jd})^\top \in \mathbb{R}^d$. We know immediately that $B = (\beta_1, \cdots, \beta_p)^\top \in \mathbb{R}^{p \times d}$. $\mathbb{R}^{p \times d}$. Then, $\mathcal{S}(\mathbb{Z})$ can be estimated by minimizing $\mathcal{O}(\mathbb{Z}, B)$ with respect to both $\mathbb{Z} \in \mathbb{R}^{n \times d}$ and $B \in \mathbb{R}^{p \times d}$.

Estimation Accuracy

To quantify the estimation accuracy of $\mathcal{S}(\widehat{\mathbb{Z}})$, the following two discrepancy measures are considered. They are, respectively,

$$D_1(\mathbb{Z},\widehat{\mathbb{Z}}) = n^{-1} tr \left\{ \mathbb{Z}^\top Q(\widehat{\mathbb{Z}}) \mathbb{Z} \right\} \text{ and } D_2(\mathbb{Z},\widehat{\mathbb{Z}}) = tr \left\{ H(\mathbb{Z}) - H(\widehat{\mathbb{Z}}) \right\}^2.$$

Theorem 2. Assume $d = d_0$ and the technical conditions (A1)-(A3) as given in the Appendix A, then we should have both $D_1(\mathbb{Z},\widehat{\mathbb{Z}}) = O_p(n^{-1})$ and $D_2(\mathbb{Z},\widehat{\mathbb{Z}}) = O_p(n^{-1})$.

Profiled Independent Screening

- With estimated d_0 and $\mathcal{S}(\mathbb{Z})$, we can get factor profiled data as $\widehat{\mathbb{Y}} = Q(\widehat{\mathbb{Z}})\mathbb{Y} \in \mathbb{R}^n$ and $\widehat{\mathbb{X}} = Q(\widehat{\mathbb{Z}})\mathbb{X}$, with $\widehat{\mathbb{X}} = (\widehat{\mathbb{X}}_1, \cdots, \widehat{\mathbb{X}}_p) \in \mathbb{R}^{n \times p}$.
- Subsequently, the simple method of SIS can be applied to X and X directly, and the resulting estimate is path consistent (Leng et al., 2006). We refer to such a method as PIS.
- More specifically, PIS estimates θ_j by $\hat{\theta}_j = (n^{-1} \widehat{\mathbb{X}}_j^\top \widehat{\mathbb{X}}_j)^{-1} (n^{-1} \widehat{\mathbb{Y}}^\top \widehat{\mathbb{X}}_j).$

Theorem 3. Assume $d = d_0$ and the technical conditions (A1)–(A3) as given in the Appendix A, then we should have $\max_{1 \le j \le p} |\hat{\theta}_j - \theta_{0j}| = O_p(\sqrt{\log p/n})$ as $n \to \infty$.

A BIC Criterion

Previous subsection proves that PIS is path consistent, which implies that $P(\mathcal{M}_T = \mathcal{M}_{(|\mathcal{M}_T|)}) \to 1$ as $n \to \infty$. However, for a real application, the value of $|\mathcal{M}_T|$ is unknown. Thus, even if the solution path is given, one still needs a statistically sound criterion to decide which model in \mathbb{M} is mostly plausible. To this end, we proposed here the following heuristic BIC-type selection criterion,

$$BIC(\mathcal{M}) = \log RSS(\mathcal{M}) + |\mathcal{M}| \cdot \log n \cdot (\log p/n), \qquad (3.1)$$

where $\operatorname{RSS}(\mathcal{M}) = \|\widehat{\mathbb{Y}} - \sum_{j \in \mathcal{M}} \hat{\theta}_j \widehat{\mathbb{X}}_j\|^2$ is the residual sum of squares. Then the best model can be selected as $\widehat{\mathcal{M}} = \operatorname{argmin}_{\mathcal{M} \in \mathbb{M}} \operatorname{BIC}(\mathcal{M})$.

Profiled Sequential Screening

Step (1) (*Initialization*). Set $\mathcal{M}_{(0)}^* = \emptyset$ and $\widehat{\mathbb{Y}}^{(0)} = \widehat{\mathbb{Y}}$, i.e., the factor profiled response.

Step (2) (Sequential Screening).

- (2.1) (*Estimation*). In the kth step $(k \ge 1)$, we are given $\mathcal{M}^*_{(k-1)}$ and also $\widehat{\mathbb{Y}}^{(k-1)}$. Then, for every $j \in \mathcal{M}_F \setminus \mathcal{M}^*_{(k-1)}$, estimate its regression coefficient as $\widehat{\theta}^{(k)}_j = \{\widehat{\mathbb{Y}}^{(k-1)\top}\widehat{\mathbb{X}}_j\}/||\widehat{\mathbb{X}}_j||^2$ and its correlation coefficient with the response as $\widehat{\zeta}^{(k)}_j = \{\widehat{\mathbb{Y}}^{(k-1)\top}\widehat{\mathbb{X}}_j\}/\{||\widehat{\mathbb{Y}}^{(k-1)}|| \cdot ||\widehat{\mathbb{X}}_j||\}.$
- (2.2) (Screening). We then find $a_k = \operatorname{argmax}_{j \in \mathcal{M}_F \setminus \mathcal{S}^{(k-1)}} |\hat{\zeta}_j^{(k)}|$ and update $\mathcal{M}_{(k)}^* = \mathcal{M}_{(k-1)}^* \bigcup \{a_k\}$ accordingly.
- (2.3) (*Elimination*). According to a_k , we then get an updated response vector as $\widehat{\mathbb{Y}}^{(k)} = \widehat{\mathbb{Y}}^{(k-1)} - \widehat{\theta}_j^{(k)} \widehat{\mathbb{X}}_j$ with $j = a_k$.
- Step (3) (Solution Path). Iterating Step (2) for a total of n times, which leads a total of n+1 nested candidate models. We then collect those models by a solution path $\mathbb{M}^* = \{\mathcal{M}^*_{(k)} : 0 \le k \le n\}$ with $\mathcal{M}^*_{(k)} = \{a_1, \cdots, a_k\}$ for k > 0.
- Step (4) (Model Selection). Select the best model as $\widehat{\mathcal{M}}^* = \operatorname{argmin}_{\mathcal{M} \in \mathbb{M}^*} \operatorname{BIC}(\mathcal{M}).$

A Simulation Study

Example 1. This is an example borrowed from Fan and Lv (2008). Specifically, we fix $d_0 = 1$, p = 5000, and n = 150. Z_i is generated from N(0, 1). X_i is then simulated as (2.2), where $b_{jk} = 1$ and \widetilde{X}_i follows a *p*-dimensional standard normal distribution. Following Fan and Lv (2008), we assume the first $|\mathcal{M}_T| = 3$ predictors to be relevant and their coefficients are given by $\theta_{0j} = 5$ for $1 \le j \le |\mathcal{M}_T|$. Accordingly, $\theta_{0j} = 0$ for every $j > |\mathcal{M}_T|$. Subsequently, Y_i is given by (2.1), where ε_i follows (2.3) with $\alpha_0 = 0.8\sigma_{\varepsilon}$ and $\tilde{\sigma}_{\varepsilon} = 0.6\sigma_{\varepsilon}$. Lastly, σ_{ε}^2 is particularly selected so that the signal-tonoise ratio, i.e., SNR=var $(X_i^{\top}\theta_0)/\sigma_{\varepsilon}^2$, is given by 1, 2, or 5.

Signal	Variable	% of	% of	% of	Average	Absolute
Noise	Selection	Correct	Incorrect	Correct	Model	Estimation
Ratio	Method	Zeros	Zeros	fit	Size	Error
			EXAMPLE	E 1		
1	SIS	100.0	77.2	0.0	1.0	25.4
	PIS	100.0	95.8	0.5	0.1	14.6
	\mathbf{PSS}	100.0	95.8	0.5	0.1	14.6
2	SIS	100.0	70.3	0.0	1.0	21.3
	PIS	100.0	46.3	40.0	1.6	7.9
	\mathbf{PSS}	100.0	43.3	45.5	1.7	7.4
5	SIS	100.0	67.0	0.0	1.0	18.4
	PIS	100.0	0.2	99.5	3.0	1.0
	\mathbf{PSS}	100.0	0.0	100.0	3.0	0.9

Real Example: Factor Dimension

As our first step, we need to estimate the dimension of the latent factor. We find that the first eigenvalue of the matrix $\mathbb{X}\mathbb{X}^{\top}/(np)$ is as large as $\hat{\lambda}_1 = 35.4\%$ while the second one is as small as $\hat{\lambda}_2 = 3.5\%$. The big difference as demonstrated between $\hat{\lambda}_1$ and $\hat{\lambda}_2$ suggests that the true factor dimension might be $d_0 = 1$. Such a conjecture is formally confirmed by MERC. We then fix d = 1 throughout the rest of this example. Thereafter, the factor subspace $\mathcal{S}(\widehat{\mathbb{Z}})$ can be estimated and the profiled data $(\widehat{\mathbb{Y}}, \widehat{\mathbb{X}})$ can be produced.

Out-of-Sample Testing

For a real problem like this, the value of θ_0 is unknown. We thus have to rely on out-of-sample testing to compare different methods' estimation and/or prediction accuracy. We then conducted a total of 200 random experiments. For each experiment, we randomly split the entire dataset $\mathcal{D} = \{1, \dots, 464\}$ into two parts. That is $\mathcal{D} =$ $\mathcal{D}_0 \bigcup \mathcal{D}_1$ with $|\mathcal{D}_0| = n_0 = 400$ as the training data and $|\mathcal{D}_1| = n_1 = 64$ as the testing data. Accordingly, we write $\mathbb{X}_0 = \{X_i : i \in \mathcal{D}_0\} \in \mathbb{R}^{n_0 \times p}, \mathbb{Y}_0 = \{Y_i : i \in \mathcal{D}_0\} \in \mathbb{R}^{n_0},$ $\mathbb{X}_1 = \{X_i : i \in \mathcal{D}_1\} \in \mathbb{R}^{n_1 \times p}$, and $\mathbb{Y}_1 = \{Y_i : i \in \mathcal{D}_1\} \in \mathbb{R}^{n_1}$. Notations for $(\widehat{\mathbb{X}}_0, \widehat{\mathbb{X}}_1)$, $(\widehat{\mathbb{Y}}_0, \widehat{\mathbb{Y}}_1)$, and $(\widehat{\mathbb{Z}}_0, \widehat{\mathbb{Z}}_1)$ are defined accordingly.

Different Variable Selection Methods

Figure 1: The real supermarket example. Boxplots for the median squared prediction errors (MSPE) based on 200 random replications.

Comments are very welcome! Many thanks!